SPULSA | Server Pulsa all operator dan PPOB Termurah

Kamis, 20 Januari 2011

Cara mudah meningkatkan performa mesin

  • Menambah kapasitas mesin – Kapasitas mesin lebih besar berarti lebih bertenaga, bukan berarti kapasitas kecil ga bisa kencang, orang yang bore up gila2an aja kadang masih kalah dengan yang kapasitasnya lebih kecil :) Tapi mengesampingkan hal itu semua, untuk motor harian, meningkatkan kapasitas mesin lebih besar dari bawaan pabrik akan memperbaiki prestasi motor, karena kamu bisa memperoleh lebih banyak debit gas yang terbakar dalam setiap putaran mesin, masuk akal bukan… :) Caranya hanya ada dua : Melesakkan piston dengan diameter lebih besar, atau memanjangkan langkah ayun piston dengan menggeser big end lebih maju atau mengganti dengan pen stroker aftermarket yang umum dijual di pasaran.
  • Meningkatkan Rasio – Rasio Kompresi yang lebih tinggi pasti memproduksi tenaga lebih, sedikit atau banyak. Semakin kamu padatkan campuran udara/bahan bakar , semakin cepat campuran ini menyembur menjadi api secara spontan, namun tentunya harus diimbangi dengan oktan bahan bakar yang pas untuk mencegah pembakaran dini. Ini jawaban kenapa mesin motor balap road-race, atau drag yang diliput di tabloid-majalah umumnya memakai bahan bakar ber oktan tinggi – karena mesin mereka memakai rasio kompresi lebih tinggi untuk mendapatkan tenaga. Lantas caranya bagaimana, ada banyak cara. Mulai dari memapas kop atau cylinder head, blok, meninggikan dome piston, atau mempersempit kubah ruang bakar hingga menyerupai bak mandi orang kaya (bathtub maksudnya) kalok yang belum tau bathtub… sama… hahahahah soalnya di rumah adanya emberrrr :D Atau bisa juga dengan menggabungkan berbagai metoda itu.
  • Mudahkan udara mengalir masuk – Ketika piston meluncur mundur atau turun pada langkah hisap, hambatan udara dapat merampok pundi-pundi tenaga dari mesin. Hambatan udara bisa dikurangi dengan modifikasi serius, karena kesalahan bisa berakibat fatal, melakukan modifikasi pada saluran pemasukan silinder atau seringkali disebut Porting, selain memperbesar volumenya, pun harus memperhatikan geometri porting agar lebih terarah dan aliran udara menjadi lembut. Teknik lain yang mampu mengurangi hambatan secara drastis adalah konfigurasi multi klep masuk atau menempatkan 2 klep masuk dalam sebuah silinder. Dan intake manifold yang halus layaknya manifold koso yang mahal tentu sangat bagus melancarkan aliran udara/bahan bakar yang ingin masuk ke porting. membuka filter udara adalah cara yang paling mudah :)
  • Bathtub Cylinder Head by. RAT
  • Lepaskan gas buang denga bebas keluar – Jika hambatan udara membuat gas keluar dari silinder, ini akan mengambil tenaga mesin. Sama seperti kita jika susah BAB, hahahha… :D sama gak sih?! :) Cara memperlancar gas buang gimana? Apa pasang knalpot free flow? Itu satu cara, urutan pelepasan gas buang tentu dari klep exhaust. Dengan memperbesar atau head yang memakai dua klep buang secara cepat akan mampu melepas gas sisa pembakaran dari dalam silinder. Memperbaiki porting buang, seperti kata pepatah Graham Bell ” Kalok gak seukuran 100 % diameter klep – maka belum racing namanya” hehehe… Yang halus lebih baik. Kalau perlu mengkilat seperti kaca. Kalau perlu, lho… :)   Jika pipa knalpot terlalu keciiilll… seperti bawaan pabrik, atau muffler memiliki banyak sekat akan membuat efek tendangan balik semakin besar. Knalpot performa tinggi memakai rangakaian pipa header yang lebih besar, dan pipa belakang yang semakin membesar, dan muffler free flow yang akan mengusir kotoran jauh-jauh dari dalam silinder. Penyakit kok dipelihara dalam perut… :D Jika kamu mendengar knalpot free-flow, maka tujuan memakai knalpot itu adalah meningkatkan tenaga mesinnya.
  • Muffler Racing
  • Buat semuanya ringan – Part yang lebih ringan membantu mesin bekerja lebih baik. Setiap piston berubah arah, pasti memerlukan energy untuk berhenti dan memulai ke arah yang lain. Piston yang lebih ringan mengurangi pemakaian energy ini. Mengurangi beban gesekan, mengurangi beban rotasi, semua hal ini apa yang disebut meningkatkan efisiensi mekanis.

  • Injection – Sistem kontrol campuran bahan bakar secara elektronis melalui injector akan memberikan keakuratan tingkat tinggi pada setiap derajat langkah piston dan kepastian debit yang dibutuhkan sesuai beban mesin. Oleh karenanya teknologi ini meningkatkan performa dan pemakaian bahan-bakar yang lebih ekonomis.

Tugas makalah mesin bensin

MAKALAH  MESIN  BENSIN

                        
http://t2.gstatic.com/images?q=tbn:ANd9GcRogzVuD-JhYumQ_hXAUchJBCVvGKZjRNWIVn1DyNRiaoepJpQGbg







                   Di Susun Oleh KELOMPOK 3 :
                                MUNAWIR
                            RIFANDI
                          ZULKIFLI
                           FADLI  A T
                   MUH.SAID IBRAHIM
               Guru Pembimbing : Muh. Idris S.Pd



MESIN BENSIN
-         Pengertian mesin bensin
Mesin bensin atau mesin Otto dari Nikolaus Otto adalah sebuah tipe mesin pembakaran dalam yang menggunakan nyala busi untuk proses pembakaran, dirancang untuk menggunakan bahan bakar bensin atau yang sejenis.
Mesin bensin berbeda dengan mesin diesel dalam metode pencampuran bahan bakar dengan udara, dan mesin bensin selalu menggunakan penyalaan busi untuk proses pembakaran.
       Pada mesin diesel, hanya udara yang dikompresikan dalam ruang bakar dan dengan sendirinya udara tersebut terpanaskan, bahan bakar disuntikan ke dalam ruang bakar di akhir langkah kompresi untuk bercampur dengan udara yang sangat panas, pada saat kombinasi antara jumlah udara, jumlah bahan bakar, dan temperatur dalam kondisi tepat maka campuran udara dan bakar tersebut akan terbakar dengan sendirinya.
        Pada mesin bensin, pada umumnya udara dan bahan bakar dicampur sebelum masuk ke ruang bakar, sebagian kecil mesin bensin modern mengaplikasikan injeksi bahan bakar langsung ke silinder ruang bakar termasuk mesin bensin 2 tak untuk mendapatkan emisi gas buang yang ramah lingkungan. Pencampuran udara dan bahan bakar dilakukan oleh karburator atau sistem injeksi, keduanya mengalami perkembangan dari sistem manual sampai dengan penambahan sensor-sensor elektronik. Sistem Injeksi Bahan bakar di motor otto terjadi diluar silinder, tujuannya untuk mencampur udara dengan bahan bakar seproporsional mungkin. Hal ini dsebut EFI
CARA KERJA MESIN BENSIN
Agar menghasilkan tenaga gerak, pada mesin bensin diiakukan tahapan proses berikut :  
1) Pengisapan gas (campuran bensin dan udara) ke dalam silinder ketika piston bergerak turun.
2) Kompresi di dalam ruang bakar ketika piston bergerak naik. Di akhir kompresi ini dilakukan penyalaan oleh busi, agar gas terbakar.
3) Kerja yaitu bergeraknya pinton ke bawah karena terdesak oleh gas hasil pembakaran yang bersuhu dan bertekanan tinggi.

4) Pembuungan, yaitu membuang gas sisa pembakaran ke luar silinder
.


http://otomotif.web.id/image/1.2.jpg

Proses pengisapan gas ke dalam silinder. mengkompresikan, membakarnya,  kerja, dan membuang gas bekas pembakaran ke luar silinder disebut satu siklus.

        untuk melaksanakan satu siklus dapat dilakukan dua cara, yaitu:
- satu siklus dilakukan dalam empat langkah torak. Cara ini ada pada mesin bensin empat langkah (mesin 4 tak), dan
- satu siklus dilaksanakan dalam dua langkah torak. Cara ini ada pada motor bensin dua langkah (mesin 2 tak).


http://otomotif.web.id/image/1.3.jpg

# Langkah isap
       Pada langkah ini, torak bergerak dari TMA ke TMB, katup isap terbuka sehingga gas (campuran bensin dan udara) terisap masuk ke silinder. 
Katup isap kemudian tertutup ketika torak mencapai TMB.

# Langkah kompresi
       Pada langkah ini, torak bergerak dari TMB ke TMA, katup isap dan katup buang tertutup, sehingga gas termampatkan (terkompresikan). 
Akibat kompresi ini, suhu dan tekanan gas naik, sehingga akan terbakar. 
Sesaat sebelum terak mencapai TMA, busi memberi loncatan bunga api dan terjadilah pembakaran.

# Langkah kerja
        Pada Iangkah ini, torak terdorong dari TMA ke TMB oleh kekuatan tekanan gas hasil pembakaran. Gerakan torak pada langkah ini disebut melakukan kerja, yang selanjutnya dijadikan sebagai tenaga gerak dari mesin.


# Lungkuh buang
        Pada langkah ini, torak bergerak dari TMB ke TMA, katup buang terbuka, sehingga gas sisa pembakaran terdorong keluar silinder melalui lubang katup buang dan saluran pembuangan. Setelah torak mencapai TMA, 
dari sini akan dimulai lagi siklus berikutnya yang diawali dengan pengisapan gas baru.

         Gerakan bolak-balik torak diubah oIeh poros engkol menjadi gerak putar. Dalam satu siklus yang terdiri atas 4 langkah torak (isap, komprcsi, usaha, dan buang), poros engkol telah melakukan 2 putaran penuh.

http://otomotif.web.id/image/1.4.jpg
Ketika torak bergerak naik saluran pembilas A tertutup torak dan kompresi dimuIai. 
Sementara itu saluran pemasukan C membuka dan gas (campuran udara dan bensin) masuk ke ruang engkol. Penyalaan dan pembakaran terjadi pada waktu torak mulai bergerak
turun, saluran  buang B membuka. Ketika saluran pembilas A membuka gas baru yang berada di ruang engkol terdesak memasuki silinder sambil mendesak gas bekas pembakaran keluar siilinder melalui saluran buang B

http://otomotif.web.id/image/1.10.jpg
Torak (piston) berfungsi untuk memindahkan tenaga yang diperoleh dari hasil pembakaran ke poros engkol. Pada piston terdapat komponen-komponen pelengkapnya, yaitu :
* Batang penghubung (connecting rod untuk menghubungkan piston dengan poros engkol.
* Pena torak (piston pin), untuk mengikat piston dengan batang penghubung melalui lubang bushing
Cincin torak (ring piston), berfungsi membentuk perapat yang kedap terhadap kebocoran gas antara celah torak dan silinder,sekaligus mengatur pelumasan torak dan dinding silinder. Cincin torak terdiri atas cincin kompresi dan cincin pelumas.
http://otomotif.web.id/image/1.12.jpg

 

http://otomotif.web.id/image/1.13.jpg

         Poros engkol (crank shaft), berfungsi mengubah gerak bolak-balik torak menjadi gerak putar yang selanjutnya digunakan untuk memutarkan roda. Poros engkol dilengkapi bantalan-bantaIan yang berfungsi menghindari gesekan-gesekan yang terjadi antara poros
engkol dengan bagian-bagian yang berputar lainnya. Bagian poros engkol yang menumpu torak disisipi bantalan luncur yang disebut metal jalan, sedangkan bagian poros engkol yang menopang pada blok mesin disisipi bantalan luncur yang disebut metal duduk.

http://otomotif.web.id/image/1.14.jpg
Roda gila atau roda penerus, berfungsi menerima sebagian tenaga yang diperoleh dari langkah kerja dan memberikan tenaga kepada langkah-langkah lainnya. Di bagian luar roda gila dipasang roda gigi cincin (ring gear),
Roda gigi ini digunakan untuk berkaitan dengan roda gigi pinion pada motor starter pada saat mesin akan dihidupkan.
http://otomotif.web.id/image/1.15.jpg

-          MENGENAL SISTEM INJEKSI MESIN BENSIN
Seluruh mobil terbaru yang diproduksi dan dijual sekarang ini di Indonesia sudah menggunakan teknologi injeksi untuk pasokan bahan bakarnya. Teknologi lama, yaitu karburasi (alatnya disebut karburator) sudah digusur. Kalau pun ada mobil yang masih menggunakan karburator, adalah sisa peninggalan waktu yang telah berlalu.
        Injeksi lahir, sesuai dengan tutuntan zaman. Untuk menjaga lingkungan makin bersih dan konsumsi bahan bakar juga bisa makin irit. Sistem injeksi berkembang secara bertahap. Umurnya pun sudah mencapai 40 tahun. 
Mulanya pada 1967an, Bosch yang bekerjasama dengan Mercedes-Benz memproduksi mobil dengan sistem injeksi mekanis untuk mesin berbahan bakar bensin. Pada awal 1980-an, dengan berkembangnya teknologi komputer, sistem injeksi bensin juga mengalami perubahan. Kerjanya tidak lagi secara mekanis, tetapi elektromekanis. Sistem injeksi dilengkapi dengan komputer yang merupakan 'otak' untuk mengatur kerjanya.
MPI & GDI
         Sistem injeksi yang banyak digunakan sekarang merupakan masa transisi ke yang terbaru. Pada sebagian besar mesin mobil sekarang,  injektornya  berada di mulut masuk ruang bakar mesin atau dekat dengan katup isap. Alhasil, setiap silinder menggunakan satu injektor. Karena itu pula produsen menyebut sistem injeksi dengan multipoint injection (MPI). Sebelumnya 1980-an), juga ada yang disebut Throttle Body Injection, injektor yang digunakan satu dan dipasang di tempat yang biasanya dihuni oleh karburator.
          Injeksi terbaru adalah GDI, gasoline direct injection. Sistem ini juga sudah digunakan pada beberapa merek tertentu di Indonesia yang dimasukkan secara CBU. Pada GDI, nosel injektor berada di dalam ruang bakar. Dengan cara ini bahan bakar langsung disemprotkan ke ruang bakar. Metode ini sama dengan yang digunakan pada mesin diesel  masa kini (direct injection).
Sensor-sensor
          Dengan sistem injeksi, kerja mesin jauh lebih efisien karena tidak banyak lagi menggunakan komponen mekanis untuk mengontrol kerja mesin dan pasokan bahan bakar. Perawatan juga lebih gampang! Namun untuk menangani perawatan dan gangguan, dibutuhkan mekanik dengan kemampuan berpikir lebih baik. Pasalnya, komputer yang digunakan mengatur kerja sistem injeksi dan juga sistem pengapian, punya kaitan atau tali-temali dengan komponen dan bagian lain dari mesin.


Dengan sistem injeksi yang dikontrol secara elektronik, mesin mampu beradaptasi untuk bekerja secara efisien dan efektif sesuai dengan kondisi lingkungan. Misalnya, berdasarkan perubahan suhu, kelembaban udara, ketinggian tempat, beban mesin atau kendaraan, kecepatan, jenis bahan bakar dan sebagainya. Untuk ini, sistem dilengkapi alat pengindera atau sensor-sensor plus saklar yang selanjutnya mengirimkan informasi ke otak mesin yang disebut Engine Control Module (ECM) atau Engine Control Unit (ECU)























PENUTUP

Demikian yang dapat kami paparkan mengenai materi yang menjadi pokok bahasan dalam makalah ini, tentunya masih banyak kekurangan dan kelemahannya, kerena terbatasnya pengetahuan dan kurangnya rujukan atau referensi yang ada hubungannya dengan judul makalah ini. 
Penulis banyak berharap para pembaca yang budiman dusi memberikan kritik dan saran yang membangun kepada penulis demi sempurnanya makalah ini dan dan penulisan makalah di kesempatan - kesempatan berikutnya.
Semoga makalah ini berguna bagi penulis pada khususnya juga para pembaca yang budiman pada umumnya.




Mesin 2 tak

Mesin dua tak adalah mesin pembakaran dalam yang dalam satu siklus pembakaran terjadi dua langkah piston, berbeda dengan putaran empat-tak yang mempunyai empat langkah piston dalam satu siklus pembakaran, meskipun keempat proses (intake, kompresi, tenaga, pembuangan) juga terjadi.
Mesin dua tak juga telah digunakan dalam mesin diesel, terutama rancangan piston berlawanan, kendaraan kecepatan rendah seperti mesin kapal besar, dan mesin V8 untuk truk dan kendaraan berat lainnya.

Prinsip kerja

Untuk memahami prinsip kerja, perlu dimengerti istilah baku yang berlaku dalam teknik otomotif :
  • TMA (titik mati atas) atau TDC (top dead centre), posisi piston berada pada titik paling atas dalam silinder mesin atau piston berada pada titik paling jauh dari poros engkol (crankshaft).
  • TMB (titik mati bawah) atau BDC (bottom dead centre), posisi piston berada pada titik paling bawah dalam silinder mesin atau piston berada pada titik paling dekat dengan poros engkol (crankshaft).
  • Ruang bilas yaitu ruangan dibawah piston dimana terdapat poros engkol (crankshaft), sering disebut dengan bak engkol (crankcase) berfungsi gas hasil campuran udara, bahan bakar dan pelumas bisa tercampur lebih merata.
  • Pembilasan (scavenging) yaitu proses pengeluaran gas hasil pembakaran dan proses pemasukan gas untuk pembakaran dalam ruang bakar.

[sunting]Langkah kesatu

Piston bergerak dari TMA ke TMB.
  1. Pada saat piston bergerak dari TMA ke TMB, maka akan menekan ruang bilas yang berada di bawah piston. Semakin jauh piston meninggalkan TMA menuju TMB, tekanan di ruang bilas semakin meningkat.
  2. Pada titik tertentu, piston (ring piston) akan melewati lubang pembuangan gas dan lubang pemasukan gas. Posisi masing-masing lubang tergantung dari desain perancang. Umumnya ring piston akan melewati lubang pembuangan terlebih dahulu.
  3. Pada saat ring piston melewati lubang pembuangan, gas di dalam ruang bakar keluar melalui lubang pembuangan.
  4. Pada saat ring piston melewati lubang pemasukan, gas yang tertekan dalam ruang bilas akan terpompa masuk dalam ruang bakar sekaligus mendorong gas yang ada dalam ruang bakar keluar melalui lubang pembuangan.
  5. Piston terus menekan ruang bilas sampai titik TMB, sekaligus memompa gas dalam ruang bilas masuk ke dalam ruang bakar.

[sunting]Langkah kedua

Piston bergerak dari TMB ke TMA.
  1. Pada saat piston bergerak TMB ke TMA, maka akan menghisap gas hasil percampuran udara, bahan bakar dan pelumas masuk ke dalam ruang bilas. Percampuran ini dilakukan oleh karburator atau sistem injeksi. (Lihat pula:Sistem bahan bakar)
  2. Saat melewati lubang pemasukan dan lubang pembuangan, piston akan mengkompresi gas yang terjebak dalam ruang bakar.
  3. Piston akan terus mengkompresi gas dalam ruang bakar sampai TMA.
  4. Beberapa saat sebelum piston sampai di TMA, busi menyala untuk membakar gas dalam ruang bakar. Waktu nyala busi sebelum piston sampai TMA dengan tujuan agar puncak tekanan dalam ruang bakar akibat pembakaran terjadi saat piston mulai bergerak dari TMA ke TMB karena proses pembakaran sendiri memerlukan waktu dari mulai nyala busi sampai gas terbakar dengan sempurna.

[sunting]Perbedaan desain dengan mesin empat tak

  • Pada mesin dua tak, dalam satu kali putaran poros engkol (crankshaft) terjadi satu kali proses pembakaran sedangkan pada mesin empat tak, sekali proses pembakaran terjadi dalam dua kali putaran poros engkol.
  • Pada mesin empat tak, memerlukan mekanisme katup (valve mechanism) dalam bekerja dengan fungsi membuka dan menutup lubang pemasukan dan lubang pembuangan, sedangkan pada mesin dua tak, piston dan ring piston berfungsi untuk menbuka dan menutup lubang pemasukan dan lubang pembuangan. Pada awalnya mesin dua tak tidak dilengkapi dengan katup, dalam perkembangannya katup satu arah (one way valve) dipasang antara ruang bilas dengan karburator dengan tujuan :
    1. Agar gas yang sudah masuk dalam ruang bilas tidak kembali ke karburator.
    2. Menjaga tekanan dalam ruang bilas saat piston mengkompresi ruang bilas.
  • Lubang pemasukan dan lubang pembuangan pada mesin dua tak terdapat pada dinding silinder, sedangkan pada mesin empat tak terdapat pada kepala silinder (cylinder head). Ini adalah alasan paling utama mesin dua tak menggunakan oli samping.

[sunting]Kelebihan dan kekurangan

[sunting]Kelebihan mesin dua tak

Dibandingkan mesin empat tak, kelebihan mesin dua tak adalah :
  1. Mesin dua tak lebih bertenaga dibandingkan mesin empat tak.
  2. Mesin dua tak lebih kecil dan ringan dibandingkan mesin empat tak.
    • Kombinasi kedua kelebihan di atas menjadikan rasio berat terhadap tenaga (power to weight ratio) mesin dua lebih baik dibandingkan mesin empat tak.
  3. Mesin dua tak lebih murah biaya produksinya karena konstruksinya yang sederhana.
Meskipun memiliki kelebihan tersebut di atas, jarang digunakan dalam aplikasi kendaraan terutama mobil karena memiliki kekurangan.

[sunting]Kekurangan mesin dua tak

Kekurangan mesin dua tak dibandingkan mesin empat tak
  1. Efisiensi mesin dua tak lebih rendah dibandingkan mesin empat tak.
  2. Mesin dua tak memerlukan oli yang dicampur dengan bahan bakar (oli samping/two stroke oil) untuk pelumasan silinder mesin.
    • Kedua hal di atas mengakibatkan biaya operasional mesin dua tak lebih tinggi dibandingkan mesin empat tak.
  3. Mesin dua tak menghasilkan polusi udara lebih banyak, polusi terjadi dari pembakaran oli samping dan gas dari ruang bilas yang terlolos masuk langsung ke lubang pembuangan.
  4. Pelumasan mesin dua tak tidak sebaik mesin empat tak, mengakibatkan usia suku cadang dalam komponen ruang bakar relatif lebih rendah.

[sunting]Aplikasi

Mesin dua tak diaplikasikan untuk mesin bensin maupun mesin diesel. Mesin bensin dua tak digunakan paling banyak di mesin kecil, seperti :
  • Mesin sepeda motor.
  • Mesin pada gergaji (chainsaw).
  • Mesin potong rumput.
  • Mobil salju.
  • Mesin untuk pesawat model, dan sebagainya.
Mesin dua tak yang besar biasanya bertipe mesin diesel, sedangkan mesin dua tak ukuran sedang sangat jarang digunakan.
Karena emisi gas buang sulit untuk memenuhi standar UNECE Euro II, penggunaan mesin dua-tak untuk sepeda motor sudah semakin jarang.

Animasi cara kerja mesin dua tak.

Mesin Diesel

Mesin diesel adalah sejenis mesin pembakaran dalam; lebih spesifik lagi, sebuah mesin pemicu kompresi, dimana bahan bakar dinyalakan oleh suhu tinggi gas yang dikompresi, dan bukan oleh alat berenergi lain (seperti busi).
Mesin ini ditemukan pada tahun 1892 oleh Rudolf Diesel, yang menerima paten pada 23 Februari 1893. Diesel menginginkan sebuah mesin untuk dapat digunakan dengan berbagai macam bahan bakar termasuk debu batu bara. Dia mempertunjukkannya pada Exposition Universelle (Pameran Dunia) tahun 1900 dengan menggunakan minyak kacang (lihat biodiesel). Kemudian diperbaiki dan disempurnakan oleh Charles F. Kettering.

[sunting]Bagaimana mesin diesel bekerja

Mesin diesel yang berada di museum
Ketika udara dikompresi suhunya akan meningkat (seperti dinyatakan oleh Hukum Charles), mesin diesel menggunakan sifat ini untuk proses pembakaran. Udara disedot ke dalam ruang bakar mesin diesel dan dikompresi oleh piston yang merapat, jauh lebih tinggi dari rasio kompresidari mesin bensin. Beberapa saat sebelum piston pada posisi Titik Mati Atas (TMA) atau BTDC (Before Top Dead Center), bahan bakar dieseldisuntikkan ke ruang bakar dalam tekanan tinggi melalui nozzle supaya bercampur dengan udara panas yang bertekanan tinggi. Hasil pencampuran ini menyala dan membakar dengan cepat. Penyemprotan bahan bakar ke ruang bakar mulai dilakukan saat piston mendekati (sangat dekat) TMA untuk menghindari detonasi. Penyemprotan bahan bakar yang langsung ke ruang bakar di atas piston dinamakan injeksi langsung (direct injection) sedangkan penyemprotan bahan bakar kedalam ruang khusus yang berhubungan langsung dengan ruang bakar utama dimana piston berada dinamakan injeksi tidak langsung (indirect injection).
Ledakan tertutup ini menyebabkan gas dalam ruang pembakaran mengembang dengan cepat, mendorong piston ke bawah dan menghasilkan tenaga linear. Batang penghubung (connecting rod) menyalurkan gerakan ini ke crankshaft dan oleh crankshaft tenaga linear tadi diubah menjadi tenaga putar. Tenaga putar pada ujung poros crankshaft dimanfaatkan untuk berbagai keperluan.
Untuk meningkatkan kemampuan mesin diesel, umumnya ditambahkan komponen :
  • Turbocharger atau supercharger untuk memperbanyak volume udara yang masuk ruang bakar karena udara yang masuk ruang bakar didorong oleh turbin pada turbo/supercharger.
  • Intercooler untuk mendinginkan udara yang akan masuk ruang bakar. Udara yang panas volumenya akan mengembang begitu juga sebaliknya, maka dengan didinginkan bertujuan supaya udara yang menempati ruang bakar bisa lebih banyak.
Mesin diesel sulit untuk hidup pada saat mesin dalam kondisi dingin. Beberapa mesin menggunakan pemanas elektronik kecil yang disebut busi menyala (spark/glow plug) di dalam silinder untuk memanaskan ruang bakar sebelum penyalaan mesin. Lainnya menggunakan pemanas "resistive grid" dalam "intake manifold" untuk menghangatkan udara masuk sampai mesin mencapai suhu operasi. Setelah mesin beroperasi pembakaran bahan bakar dalam silinder dengan efektif memanaskan mesin.
Dalam cuaca yang sangat dingin, bahan bakar diesel mengental dan meningkatkan viscositas dan membentuk kristal lilin atau gel. Ini dapat mempengaruhi sistem bahan bakar dari tanki sampai nozzle, membuat penyalaan mesin dalam cuaca dingin menjadi sulit. Cara umum yang dipakai adalah untuk memanaskan penyaring bahan bakar dan jalur bahan bakar secara elektronik.
Untuk aplikasi generator listrik, komponen penting dari mesin diesel adalah governor, yang mengontrol suplai bahan bakar agar putaran mesin selalu para putaran yang diinginkan. Apabila putaran mesin turun terlalu banyak kualitas listrik yang dikeluarkan akan menurun sehingga peralatan listrik tidak dapat berkerja sebagaimana mestinya, sedangkan apabila putaran mesin terlalu tinggi maka bisa mengakibatkan over voltage yang bisa merusak peralatan listrik. Mesin diesel modern menggunakan pengontrolan elektronik canggih mencapai tujuan ini melalui elektronik kontrol modul (ECM) atau elektronik kontrol unit (ECU) - yang merupakan "komputer" dalam mesin. ECM/ECU menerima sinyal kecepatan mesin melalui sensor dan menggunakan algoritma dan mencari tabel kalibrasi yang disimpan dalam ECM/ECU, dia mengontrol jumlah bahan bakar dan waktu melalui aktuator elektronik atau hidrolik untuk mengatur kecepatan mesin.

[sunting]Tipe mesin diesel

Ada dua kelas mesin diesel: dua-stroke dan empat-stroke. banyak mesin diesel besar bertipe mesin dua tak. Mesin yang lebih kecil biasanya menggunakan tipe mesin empat tak.
Biasanya jumlah silinder dalam kelipatan dua, meskipun berapapun jumlah silinder dapat digunakan selama poros engkol dapat diseimbangkan untuk mencegah getaran yang berlebihan. Inline-6 paling banyak diproduksi dalam mesin tugas-medium ke tugas-berat, meskipun V8 dan straight-4 juga banyak diproduksi.
Mesin disel bekerja dengan kompresi udara yang cukup tinggi, sehingga pada mesin disel besar perlu ditambahkan sejumlah udara yang lebih banyak. Maka dugunakan Supercharger atau turbocharger pada intake manifold, dengan tujuan memenuhi kebutuhan udara kompresi

[sunting]Keunggulan dan kelemahan dibanding dengan mesin busi-nyala

Untuk keluaran tenaga yang sama, ukuran mesin diesel lebih besar daripada mesin bensin karena konstruksi besar diperlukan supaya dapat bertahan dalam tekanan tinggi untuk pembakaran atau penyalaan. Dengan konstruksi yang besar tersebut penggemar modifikasi relatif mudah dan murah untuk meningkatkan tenaga dengan penambahan turbocharger tanpa terlalu memikirkan ketahanan komponen terhadap takanan yang tinggi. Mesin bensin perlu perhitungan yang lebih cermat untuk modifikasi peningkatan tenaga karena pada umumnya komponen di dalamnya tidak mampu menahan tekanan tinggi, dan menjadikan mesin diesel kandidat untuk modifikasi mesin dengan biaya murah.
Penambahan turbocharger atau supercharger ke mesin bertujuan meningkatkan jumlah udara yang masuk dalam ruang bakar dengan demikian pada saat kompresi akan menghasilkan tekanan yang tinggi dan pada saat penyalaan atau pembakaran akan menghasilkan tenaga yang besar. Penambahan turbocharger atau supercharger pada mesin diesel tidak berpengaruh besar terhadap pemakaian bahan bakar karena bahan bakar disuntikan secara langsung ke ruang bakar pada saat ruang bakar dalam keadaan kompresi tertinggi untuk memicu penyalaan agar terjadi proses pembakaran. Sedangkan penambahan turbocharger atau supercharger pada mesin bensin sangat mempengaruhi pemakaian bahan bakar karena udara dan bahan bakar dicampur dengan komposisi yang tepat sebelum masuk ruang bakar, baik untuk mesin bensin dengan sistem karburator maupun sistem (injeksi)